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A semiclassical theory of a dissipative Henon�Heiles system is proposed. Based
on �-scaling of an equation for the evolution of the Wigner quasiprobability dis-
tribution function in the presence of dissipation and thermal diffusion, we derive
a semiclassical equation for quantum fluctuations, governed by the dissipation
and the curvature of the classical potential. We show how the initial quantum
noise gets amplified by classical chaotic diffusion, which is expressible in terms
of a correlation of stochastic fluctuations of the curvature of the potential due
to classical chaos, and ultimately settles down to equilibrium under the influence
of dissipation. We also establish that there exists a critical limit to the expansion
of phase space. The limit is set by chaotic diffusion and dissipation. Our semi-
classical analysis is corroborated by numerical simulation of a quantum
operator master equation.

KEY WORDS: Dissipative quantum system; semiclassical approximation;
classical chaos; Henon�Heiles Hamiltonian.

I. INTRODUCTION

The influence of dissipation on quantum dynamics of classically chaotic
systems has been one of the key issues in nonlinear dynamics today.
The dynamical way of dealing with dissipation is to consider a system-heat
bath model which has been the cornerstone for understanding dissipative
processes(1) in a wide range of physical disciplines, (2) such as, condensed
matter physics, quantum optics, chemical dynamics etc. The theoretical
development in this regard is welldocumented in the literature.(2�6) When
the system, in question, is classically chaotic, one envisages a variety of rich
physics(7�20) concerning localization and its suppression, quantum measure-
ment problem, irreversibility, relaxation, decoherence etc. The inferences
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drawn from these are sometimes extended to the question of generic quan-
tum chaos. For example, a dissipative quantum system exhibting chaos in
its classical limit was constructed by coupling the quantum kicked rotor to
a reservoir to obtain dissipative quantum standard map by Dittrich and
Graham.(7) It was observed that even weak damping is capable of dis-
rupting dynamical localization which suppresses chaotic motion in the con-
servative standard map and thus restores diffusion in action variable in the
timescale of classical relaxation. The effect of quantum correlation
on classical chaotic behaviour had been illustrated by Sundaram and
Milonni(8) by considering a kicked quantum system coupled to a reservoir.
An appropriate choice of potential results in a logistic map with self-con-
sistently generated quantum correlations. It has been observed that at
intermediate range of dissipation an irregular behaviour is induced by
quantum correlations even when the classical limit is regular. Based on an
analysis of quantum Brownian motion in d-dimensions using the unified
model for diffusion localization and dissipation, Choen(20) has proposed a
semiclassical strategy at low temperature using Feynman�Vernon prop-
agator scheme. It has been demonstrated that different mechanisms for
dephasing emerge for ergodic and nonergodic motions. In another issue
Bonilla and Guinea(15) have studied a simple model having quantum and
classical degrees of freedom in presence of dissipation. The emergence of
chaos in an open quantum system has also been considered by Spiller and
Ralph.(16)

The majority of the studies considered above are based on maps, (such
as, standard map or logistic map) which have been the testing ground for
various theories of chaos. We construct here a dissipative version of a two-
degree-of-freedom continuous system��the Henon�Heiles model, (21�23) to
study the evolution of a quantum system in presence of dissipation and
thermal diffusion. The Henon�Heiles model captures the essential generic
features of classical chaos in nonintegrable systems and has been widely
applied in the context of astronomy and chemical dynamics over the last
several decades.(21�23) Based on suitable �-scaling of Wigner equation which
incorporates the effect of dissipation and thermal diffusion, we formulate a
semiclassical dynamics which is governed by dissipation and curvature of
the classical potential. The stability of classical motion is determined by the
nature of curvature of the potential which in the chaotic regime can be con-
sidered to be a stochastic process.(24, 25) An appropriate treatment of this
stochastic process in terms of the theory of multiplicative noise yields a
Fokker�Planck equation of motion for Wigner-function. We design the
initial conditions in terms of minimum uncertainty wave packets to maxi-
mize the classical-quantum correspondence and show how the initial wave
packet corresponding to a chaotic trajectory evolves in time, and how the

272 Bag and Ray



initial quantum noise (inherent in minimum uncertainty of wave packet)
associated with it gets amplified by intrinsic classical stochasticity at the
begining to eventually settle down to equilibrium under the influence of
dissipation. We establish that there exists a critical limit to the expansion
of phase space. The limit is set by chaotic diffusion and dissipation. Our
semiclassical analysis is supplemented by quantum simulation of the
operator master equation to verify the basic theoretical propositions.

The outlay of the paper is as follow: In Section II we introduce the
quantum operator master equation and the Wigner function equation for
an open system. �-scaling of the Wigner equation results in a semiclassical
equation governed by the dissipation due to the surroundings and the
curvature of the potential. This is followed by van Kampen's treatment of
multiplicative noise(26, 27) to deal with stochastic fluctuations of the curvature
of the potential which leads to a Fokker�Planck equation. In Section III the
Fokker�Planck equation is adapted to Henon�Heiles system followed by a
detailed analysis of the problem. In Section IV a numerical simulation of the
operator master equation has been carried out to verify the theorerical
propositions. The approximations and their validity with a summary of the
main results have been discussed in Section V.

II. CHAOTIC EVOLUTION OF AN OPEN SYSTEM;
GENERAL ASPECTS

A. Quantum Dynamics

To study(2) the evolution of a quantum system in presence of weak
dissipation and thermal diffusion we first consider the Hamiltonian of an
N-degree-of-freedom system H0 .

H0= :
N

i=1

p2
i

2mi
+V([qi ]), i=1 } } } N (1)

where [qi , pi ] represents the coordinates and momenta of the N-degree-of-
freedom system. V([qi ]) is a nonlinear potential such that the classical
version of H0 admits of chaos.

The bare system is then coupled to an environment modeled by a reser-
voir of harmonic oscillators, governed by the following total Hamiltonian

H=H0+� :
�

j

0 jbj
-b j+� :

�

j

[k(0j) bj+k*(0j) bj
-] q (2)
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where bj (bj
-) denotes the annihilation (creation) operator for the harmonic

oscillators which comprise a bath. The third term represents the linear
coupling of one of the selected degrees of freedom (through co-ordinate q)
of the system to the bath. k(0j) signifies the coupling constant.

It is convenient to invoke first the rotating wave approximation
(RWA). After appropriate elimination of reservoir variables in the usual
way using Born and Markov approximations we are lead to the following
standard reduced density matrix equation for the evolution of the system, (2)

d\
dt

=&
i
�

[H0 , \]+
#
2

(2a\a-&a-a\&\a-a)

+D(a-\a+a\a-&a-a\&\aa-) (3)

Here we have expressed the system operators q, p (for N=1) in terms
of a harmonic oscillator operators a (annihilation) and a- as q=
(1�- 2m|)(a+a-) and p=i(- m|�2)(a&a-). Note that the harmonic
oscillator characterized by frequency | has nothing to do with the reser-
voir of harmonic oscillators. In the derivation above, one uses a broad
band spectral density function for the reservoir evaluated at | to realize
the damping constant # as 2? |k(|)|2 g(|) within a Markovian scheme.
D (=n� #) is the diffusion coefficient and n� (=[exp(�|�kT )&1]&1) refers to
the average thermal photon number of the reservoir. The terms analogous
to Stark and Lamb shifts are neglected. If more than one degree of freedom
of the system is coupled to the bath then the coupling term in Eq. (2) and
dissipative terms (# and D terms) in Eq. (3) should appropriately include
additional similar contributions [see Eq. (14)].

The first term in Eq. (3) corresponds to the dynamical motion of the
system that generates Liouville flow and the second term denotes the loss
of energy from the system to the reservoir, while the last term indicates the
diffusion of fluctuations of the reservoir into the system of interest. The
terms containing # arise due to the interaction of the system with the sur-
roundings.

We note that Eq. (3) is a popular form of the operator master equa-
tion (as derived by Louisell(2)) which is widely used in quantum optics. The
equation has also been applied earlier by Dittrich and Graham(7) in the
treatment of dissipative standard map and the related problems of chaotic
dynamics by others.(8, 16) The Eq. (3) is also general in the sense that we
need not ascribe any notion of regularity or chaoticity in describing the
motion governed by the Hamiltonian system (H0). The correlation between
different forms of operator master equation has been reviewed in ref. 5. All of
them, however, are not well-suited for numerical simulation. Equation (3)
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suits this purpose well. We shall return to this issue in Section IV to verify
the theoretical propositions. We note, in passing, that Eq. (3) is based on
rotating wave approximation and Born�Markov approximation. The latter
approximation restricts its validity to weak damping limit only.

B. Semiclassical Theory

Our next task is to go over from a full quantum operator problem to
an equivalent c-number problem described by the Hamiltonian (2). To this
end we consider the quasi-classical distribution function W([qi ], [ pi ], t)
of Wigner(28). The time evolution of this phase space function of the
dynamical system characterized by the c-number variables [qi , pi ] is based
on two considerations: First, one takes into account of the usual dynamical
evolution under the influence of potential V as defined in (1). The second
is the dissipative evolution of the system when it is coupled to the
harmonic oscillator bath described by Eq. (2). The former is essentially
rewriting Schro� dinger equation in a quasi-classical langauge and has noth-
ing to do with the latter. Thus we write

\dW
dt +=\�W

�t +dynamical

+\�W
�t +dissipative

While the dynamical evolution is governed by Wigner equation, (28)

\�W
�t +dynamical

= :
N

i=1
_&

pi

mi

�W
�qi

+\�V
�qi +

�W
�p i &

+ :
n1+n3+ } } } +nN is odd and >1

\ �n1+ } } } nNV
�qn1

1 } } } �qnN
N +

(��2i)n1+ } } } +nN&1

n1 ! } } } nN!

_
�n1+ } } } +NN

�pn1
1 } } } �pnN

N

W

the form of (�W��t)dissipative is due to Caldeira and Leggett(5) as given by
[when one of the system degrees of freedom is coupled to the reservoir as
expressed in Hamiltonian (2); see the dissipative part of Eq. (5.14) of
ref. 5]

\�W
�t +dissipative

=2#
�

�p
pW+D

�2W
�p2

where # and D have the same significance as in Eq. (3). The first term in
the last equation is a direct consequence of the existence of a #-dependent
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term in the imaginary part of the exponent in the expression for the
propagator for the density operator of Feynman and Vernon theory and
has been shown(5) to be responsible for appearance of a damping force in
the classical equation of motion for the Brownian particle to ensure quan-
tum-classical correspondence.

The total dynamics is a superposion of two contributions provided by
the last two equations and when written elaborately we have;

dW
dt

= :
N

i=1
_&

pi

mi

�W
�qi

+\�V
�qi +

�W
�pi &

+ :
n1+n3+ } } } +nN is odd and >1

\ �n1+ } } } nNV
�qn1

1 } } } �qnN
N
+ (��2i)n

1+ } } } +nN&1
n1 ! } } } nN !

_
�n1+ } } } +NN

�pn1
1 } } } �pnN

N

W+2#
�

�p
pW+D

�2W
�p2 (4)

That the two contributions to the total evolution of the Wigner func-
tion in Eq. (4) act independently in the overall dynamics is an assumption.
This assumption is also implicit in the operator master equation (3) and
has been routinely used in nonlinear and quantum optics, in general. (Note
that Eq. (5.14) of ref. 5 carries the same message for a single-degree-of-
freedom system). Strictly speaking, the # and D terms in Eqs. (3) and (4)
are valid if the system operators [i.e., q and p in Eq. (2)] pertain to a har-
monic oscillator. When the system is nonlinear, as in the present case (also
in many nonlinear optical situations) the usual practice is to add the addi-
tional contribution &i[Hnon , \] to the master equation [in the language
of Fokker�Planck description this commutator, in general, contributes
higher (third or more) order derivatives of the distribution] and to assume
that the dissipative terms remain unaffected by the addition of the com-
mutator term, Hnon being the nonlinear part of the Hamiltonian H0 . The
validity of this assumption was examined(29) earlier by Haake et al. and
also by us. It is now known that this assumption is quite satisfactory within
the perview of weak damping and�high temperature limit.

The equation (4) is a full quantum mechanical equation. A simple
version of the above equation for one-degree-of-freedom system was used
earlier by Zurek and Paz(18) for studying some interesting aspects of quan-
tum-classical correspondence in relation to decoherence. The primary
reasons for choosing Eq. (4) as our starting point for semiclassical analysis
are (i) the rotating wave approximation (RWA) in the system-reservoir
coupling has not been made in deriving Eq. (4) (ii) Eq. (4) is also free from
Born approximation (or weak-coupling approximation) ensuring that the
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theory is valid even in the strong damping limit. (iii) Eq. (4) reaches the
correct classical limit when � � 0, when D becomes the thermal diffusion
coefficient in the high temperature limit. Thus Eq. (4) is a good description
in the semiclassical limit. Keeping in view of these remarks and the earlier
discussion in Section IIA we observe that Eq. (3) and Eq. (4) describe same
dynamics in weakly dissipative systems. We adopt Eq. (4) for our semi-
classical analysis that follows and Eq. (3) for quantum numerical simula-
tion in Section IV to verify the theoretical propositions of this analysis.

The first term in Eq. (4) is the usual Poisson bracket which generates
the Liouville flow. Both the Poisson bracket and the higher derivative
terms result from an expansion of the Moyal bracket on the basis of an
analytic V(q). The last two terms have the same significance as in Eq. (3).
It is important to note that the failure of correspondence between classical
and quantum dynamics is predominantly due to higher derivative terms
which make their presence felt roughly beyond the Ehrenfest regime.

As a first step it is convenient to introduce the following scaling of
c-numbers [qi , pi ] in analogy to van Kampen's 0-expansion;

qi =qi (t)+�1�2+i
(5)

pi = pi (t)+�1�2&i

where � is the associated smallness parameter for the present analysis.
+ and & in Eq. (5) refer to quantum fluctuations in co-ordinate and
momentum, respectively. q(t) and p(t) are the corresponding classical co-
ordinate and momentum. The time evolution of the distribution function of
the fluctuation variables obeys

�,([+i ], [&i ], t)
�t

=:
k _&

&k

mk

�,
�+k

++j
�2V

�q j �qk

�,
�&k&+2#

�
�&

&,+O(�1�2) (6)

Although this equation does not involve any � explicitly, it describes
the time evolution of probability density function ,([+i ], [&i ], t) for the
quantum noise variables [+i , &i ], since , is the lowest order quantum
correction to classical distribution function W(qi (t), pi (t), t). Secondly, the
quantum dynamics enters into the picture when we put the quantum
constraint (8) on the initial density function ,([+k], [&k], 0)

,([+k], [&k], 0)= `
N

k=1

1
4_

exp _&
+2

k

2_2&2_2&2
k& (7)
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as

( (2+i)
2) 1�2 ( (2&i)

2) 1�2=_ }
1

2_
=

1
2

(8)

where �=1 is used.
We thus note that the initial density ,(+, &, 0) is not a $-function but

has an appropriate spread. This spread incorporates the quantum noise
which gets amplified as the density , evolves in time. It is thus a quantum
(minimum uncertainty product) condition and a requirement imposed by
quantum-classical correspondence. & in Eq. (6) refers to the specific degree
of freedom of the system to which the reservoir is coupled to allow the
exchange of energy between the system and the reservoir.

As a second step we put Eq. (6) in a more compact form by invoking
the symplectic structure of the Hamiltonian dynamics. For this, we specify

zi={ qi

p i&N

for i=1,..., N
for i=N+1,..., 2N

(9)

Defining I as

I=\ 0
&E

E
0 + (10)

where E is an N�N unit matrix, one can write the Hamilton's equation

z* i=:
j

Iij
�H
�z j

(11)

Again we introduce the scaling zi as

zi=zi (t)+�1�2'i (12)

with

'i =+i for i=1,..., N

=&i&N for i=N+1,..., 2N (13)

corresponding to quantum fluctuations in co-ordinates (+i) and momenta
(&i). We generalize Eq. (6) further to the extent that all the momentum
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components ('i , i=N+1,..., 2N ) are coupled to the bath linearly. One
obtains the equation of motion for quantum fluctuation distribution function

�,
�t

=&:
i, j _Jij 'i

�,
�'j

&2#j
�

�'j
('j,)& (14)

where we have assumed that

#j =0 for j=1,..., N

#j =# for j=N+1,..., 2N

Here

Jij=:
k

Iik
�2H

�zk �z j
(15)

contains the second derivatives of the potential and is a function of classical
dynamical variables zi (t), (i.e., pi (t) and qi (t)).

For further treatment Eq. (14) may be rewritten in a more compact
form as follows:

�,
�t

=[&F(t) } {+2N#] , (16)

where

F(t)=J
�
(t) '&2#K

�
' (17)

{ refers to differentiation with respect to the components of ' and K
�

is a
2N�2N matrix defined as

kij =0 for i{ j

kii =0 for i=1,..., N

kii =1 for i=N+1,..., 2N

J
�
, the jacobian matrix as defined in (15) is a function of classical

dynamical variables [qi (t), pi (t)]. The crucial question of stability�
instability of classical motion in Hamiltonian systems essentially rests on
this jacobian, or curvature (or second derivative) of the potential. Tradi-
tionally the local linear stability analysis around the fixed points is based
on the assumption(22, 23) of constant curvature. However, the true stability
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of motion is only determined by keeping the time dependence of J
�(implicitly through [qi (t), pi (t)]) matrix intact. Also there is little connec-

tion between the local stability and global chaos. In view of this it is
necessary to take full account of the time dependence of the curvature of
the potential J

�
(t) along the trajectory itself. When the motion of the

dynamical system is regular J
�
(t) is highly correlated throughout the entire

course of evolution. On the other hand for chaotic motion when the
dynamical variables in J

�
(i.e., [qi (t), pi (t)]) by virtue of the classical equa-

tion of motions for qi (t) and pi (t) [or in general zi (t) of Eq. (9)] behaves
stochastically J

�
(t) describes a stochastic process. The loss of correlation in

chaotic dynamical systems thus rests on the decay of correlation of fluctua-
tions of J

�
(t). What follows subsequently is a stochastic description of classi-

cal chaos in terms of this correlation.
Ever since the early numerical study of Chirikov mapping(30) revealed

that the motion of a phase space variable [q or p] can be characterized by
a simple random walk diffusion equation, attempts have been made to
describe chaos in terms of a stochastic description (Langevin and Fokker�
Planck description has been widely employed). It has now been realized
that deterministic maps can result in long time diffusional processes and
methods have been developed to predict successfully the corresponding dif-
fusion coefficients.(31) In a number of recent studies (11, 24, 25) we have shown
that the fluctuation in the curvature of the potential is amenable to a
stochastic description in terms of the theory of multiplicative noise. This
allows us to realize a number of important results of nonequilibrium
statistical mechanics, like Kubo relation(24) fluctuation-decoherence rela-
tion(25) etc. in chaotic dynamics of a few-degree-of-freedom system.

Another important point to be noted here is that we do not make any
a priori assumption about the nature of the stochastic process (J(t)). The
special cases, such as, noise is Gaussian or $-correlated, etc. have attracted
so much attention in the literature that it is necessary to emphasize that we
have not made any such approximation. The stochasticity of F(t) depends
on J

�
which is determined by the exact solution of the classical equation of

motion (11). Equation (16) may therefore be regarded as a stochastic dif-
ferential equation with multiplicative noise. For convenience F(t) } { can be
partitioned (this partitioning will be clarified in more detail in the next sec-
tion) into two parts; a constant part F0 } { and a fluctuating part F1(t) } {.
Thus we write

F } {=F0 } {+F1 } { (18)

We now come to the third step. Making use of one of the main results
for the theory of linear equation of the form (16) with multiplicative noise,
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we derive an average equation for , as given by (for details, we refer
to(26, 27));

�(,)
�t

={&F0 } {+2N#&(F1 } {)

+|
�

0
d{((F1(t) } { exp(&{[F0 } {+2N#]) F1(t&{) } {))

_exp({[F0 } {+2N#])= (,) (19)

where (( } } } )) implies ((qi qj))=(qi qj) &(q i)(qj). The operator
exp(&{F0 } {) provides the solution of the equation

�f (', t)
�t

=&F0 } {f (', t) (20)

(where f signifies the ``unperturbed'' part of ,) which can be found
explicitly in terms of characteristic curves. The equation

'* =F0(') (21)

for fixed t determines a unperturbed mapping from '({=0) to '({), i.e.,
' � '{ with inverse ('{)&{='. The solution of (20) is

f (', t)= f ('&t, 0) } d'&{

d' }=exp[&tF0 } {] f (', 0) (22)

|d'&t�d'| being a Jacobian determinant. The effect of exp(&tF0 } {) on
f (') is as follows

exp(&tF0 } {) f (', 0)= f ('&t, 0) } d'&t

d' } (23)

When this simplification is used in Eq. (19) we obtain

�(,)
�t

={&F0 } {+2N#&(F1 } {)+|
�

0
d{ } d'&{

d' }
_((F1(', t) } {{F1('&{, t&{))) } {&{ } d'

d'&{ }= (,) (24)

The above consideration is based on a second order expansion in :{c

(by van Kampen(26)), where : is the strength parameter required for
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bookkeeping the order of the perturbation fluctuation and {c is the correla-
tion time of fluctuations in F1(t) [in the derivation above we have put
:=1]. The average (,) in Eq. (24) varies on a coarse-grained timescale
which is much slower compared to the timescale set by the correlation time
of fluctuation of F1(t). Second, the derivation above neglects the effects of
higher powers of � and thus the Eq. (24) is an effective semiclassical equa-
tion for quantum fluctuation distribution function. Since it contains second
derivatives with respect to components of ', it has the form of a Fokker�
Planck equation. Third, the theory discussed so far (Eq. (24)) is valid, in
general, for N-degree-of-freedom systems.

We now adapt Eq. (24) to the classic paradigm of chaotic dynamics��
the Henon�Heiles system.

III. THE DISSIPATIVE HENON�HEILES SYSTEM

A. The Fokker�Planck Equation

We consider the Henon�Heiles system which is kept in contact with
the surroundings. The Hamiltanian of this system is given by

H0=
p2

1

2
+

p2
2

2
+V(q1 , q2) (25)

where V(q1 , q2)= 1
2 (q2

1+q2
2+2q2

1 q2& 2
3q3

2), is the potential energy of the
two-degree-of-freedom system.

The classical equations of motion of the particle in presence of
damping (at a rate #) are

q* i=pi

(26)
p* i=&#pi&

�V(q1 , q2)
�qi

, i=1, 2

Note that in the above equation we have assumed for simplicity the
value of dissipation rate same for both the degrees of freedom. The equa-
tions of motion for the quantum fluctuation variables '1 , '2 , '3 and '4

corresponding to q1 , q2 , p1 and p2 , respectively, read as follows:

d
dt \

'1

'2

'3

'4
+=J

� \
'1

'2

'3

'4
+ (27)
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Following the procedure as described in the last section J
�

can be iden-
tified as

J
�
=\

0
0

&1&`1(t)
`2(t)

0
0

`2(t)
&1+`1(t)

1
0
0
0

0
1
0
0+ (28)

Here `1(t) and `2(t) are given by

`1(t)=2q2
(29)

`2(t)=&2q1

Since both q1 , q2 are determined by classical equations of motion (26),
chaoticity of the trajectory imparts stochasticity in the dynamics of quan-
tum fluctuations in Eq. (27). Thus, as elaborated in the last section, `(t)
terms represent the stochastic part of the second derivative of the potential
V(q1 , q2).

If one takes into consideration of the #-term then F(t) in Eq. (18) can
be written as,

F=F0+F1(t) (30)

where

F0=\
'3

'4

&'1&2#'3

&'2&2#'4
+ (31)

and

F1(t)=\
0
0

&`1(t) '1+`2(t) '2

`2(t) '1+`1(t) '2
+ (32)
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The equations for the characteristic curves are

'* 1='3

'* 2='4
(33)

'* 3=&`1(t) '1+`2(t) '2&2#'3&'1

'* 4=`2(t) '1+`1(t) '2&2#'4&'2

Equation (33) describes the dynamics of quantum fluctuations in
presence of dissipation. The mapping ' � 't can be found by solving the
unperturbed version of Eq. (33) (i.e., the ` terms are omitted) for discrete
small steps of { (which is consistent with the requirement that the correla-
tion time is short and finite) and is given by [we refer to van Kampen(26)

for details of treatment of multiplicative stochastic noise in Eq. (33)]

'&{
1 =&{'3+'1

'&{
2 =&{'4+'2

(34)
'&{

3 =
'1

2#
(e2#{&1)+'3e2#{

'&{
4 =

'2

2#
(e2#{&1)+'4e&2#{

The Jacobian determinant of the transformation reads as

}d'&{

d' }&e4#{ (35)

where the terms of the order of {2 are neglected. This is well within the
error bound (:2{c) as shown by van Kampen(26) and does not incorporate
additional error in the analysis.

Also note that

} d'
d'&{ }&e&4#{ (36)

Making use of the mapping transformations ' � '{ (Eq. (34)) one
calculates the first and second derivative terms in Eq. (24) [For details we
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refer to ref. 26]. The master equation (24) for the Henon�Heiles system can
then be written down. This is

�(,)
�t

=_&'3

�
�'1

&'4

�
�'2

+['1+2#'3&(C3 '1&B3 '2+A3 '2

&B$3 '1+A3'1+B$3 '2+B3'1+C3'2)

&((`2(t)) '2&(`1(t)) '1)]
�

�'3

+['2+2#'4&((`2) '1+(`1) '2)+(B3'2&C3'1&A3'2&B$3'1

&A3'1&B$3'2+B3 '1&C3 '2)]
�

�'4

+4#+E1

�2

�'3 �'1

+E2

�2

�'4 �'2

+F1

�2

�'3 �'2

+F2

�2

�'4 �'1

+G \ �2

�'2
3

+
�2

�'3 �'4 +
+H \ �2

�'4'3

+
�2

�'2
4+& (,) (37)

where

E1=A4 '2
2+C4'2

1&'1 '2(B$4+B4)

E2=A4 '2
1+'1'2(B4+B$4)+C4 '2

2

F1='1 '2(A4&C4)+B4'2
2&B$4 '2

1

F2='1 '2(A4&C4)&B4'2
1+B$4 '2

2

G='2
2(A2+B2)+'2

1(C2&B$2)+'1'2(A2&C2&B$2&B2)

+'1'4(B$3+C3)+'2'3(B3&A3)+'1'3(B$3&C3)&'2 '4(A3+B3)

H='2
2(B$2+C2)+'2

1(A2&B2)+'1'2(A2&C2+B2+B$2)

&'1'4(A3+B3)+'1'3(B3&A3)&'2'4(B$3&C3)

+'2'3(C3&B$3) (38)

285A Semiclassical Theory of a Dissipative Henon�Heiles System



and

A2=|
�

0
((`2(t) `2(t&{))) e&2#{ d{

(39)

B$2=|
�

0
((`1(t) `2(t&{))) e&2#{ d{

A3=|
�

0
((`2(t) `2(t&{))) e&2#{{ d{

B$3=|
�

0
((`1(t) `2(t&{))) e&2#{{ d{

A4=|
�

0
((`2(t) `2(t&{))) { d{

B$4=|
�

0
((`1(t) `2(t&{))) { d{

B2=|
�

0
((`2(t) `1(t&{))) e&2#{ d{

C2=|
�

0
((`1(t) `1(t&{))) e&2#{ d{

B3=|
�

0
((`2(t) `1(t&{))) e&2#{{ d{

C3=|
�

0
((`1(t) `1(t&{))) e&2#{{ d{

B4=|
�

0
((`2(t) `1(t&{))) { d{

C4=|
�

0
((`1(t) `1(t&{))) { d{

The above equation (37) is a Fokker�Planck equation for probability
distribution of quantum fluctuations for the dissipative Henon�Heiles
system. It is evident that stochastic averaging over classical chaos leads to
the average equation and the correlation functions contained in A2 } } } C4 .
The correlation of fluctuations of curvature of the classical potential thus
determines the drift and diffusion terms of the Fokker�Planck equation.
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It must be emphasized that this fluctuation has nothing to do with the
stochasticity inherent in the system-heat bath model governed by Hamil-
tonian (2). We also point out that since the very notion of stochastic pro-
cess in describing the curvature of the potential results in the diffusion
terms, the stochastification imparts a kind of irreversibility in the evolution
governed by the Fokker�Planck equation (37). The origin of this irrever-
sibility is classical chaos and not due to any external influence. This is
characteristic of the nonlinear system, itself.

B. The Solution of Fokker�Planck Equation

The appearance of the variables '1 , '2 , '3 and '4 in the diffusion terms
precludes the possibility of an exact solution of Eq. (37). One thus takes
resort to weak noise approximation (this is consistent with assumption that
fluctuations are not too large) scheme. The diffusion terms (given in the
Appendix) are thus assumed to be constant.

The resulting Fokker�Planck equation can be transformed to the
following simple form

�(,)
�t

=_*u
�

�u
+A

�2

�u2+4#& (,) (40)

where

u=a'1+b'2+c'3+'4 (41)

and the constants *, A, a, b, and c are given in the Appendix.
We then search for the Green's function or conditional probability

solution for the system at u at time t given that it had the value u$ at t=0.
The initial condition which is required to bring forth quantum-classical
correspondence is represented by

p(u, t=0)=
=
?

e&=(u&u$)2
(42)

This means that = should be chosen in such a way that corresponds to
the minimum uncertainty product of the initial wave packet. For notational
convenience we have used

(,(u, t)) = p(u, t) (43)
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We now look for a solution of the equation (40) of the form

p(u, t) | (u$, 0)=eG(t) (44)

where

G(t)=&
1

1 (t)
(u&0(t))2+ln &(t) (45)

We are to see that, we can, by suitable choice of 0(t), 1 (t) and &(t),
solve Eq. (40) subject to the initial condition

p(u, 0) | (u$, 0)=
=
?

e&=(u&u$)2
(46)

Comparison of this with (44) with G(0) shows that

1 (0)=
1
=

, 0(0)=u$, &(0)=
=
?

(47)

If we put (44) in (40) and equate the coefficients of equal powers of
u we obtain after some algebra the following set of equations

1
1 2

d1
dt

=&
#$
1

+
D1

1 2 (48)

d0
dt

=&*0 (49)

and

1
&

d&
dt

=4#&
D1

21
(50)

where

#$=2*
(51)

D1=4A

The relevant solution of 1 (t) for the present problem which satisfies
the initial conditions above is given by

1 (t)=1 (0) e&#$t+
D1

#$
(1&e&#$t) (52)
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It is important to note that the expansion of the wave packet is deter-
mined by 1 (t) which is controlled by the two parameters, D1 and #$ which
by the virtue of Eqs. (51) and (40) can be identified as the ``renormalized''
diffusion and drift coefficients, respectively. The origin of this ``renormaliza-
tion'' is essentially classical chaos since these coefficients are the complicated
functions of the correlation function of the fluctuations of the curvature of the
potential.

C. Results: Quantum Fluctuations, Expansion of Phase Space
and Entropy

Having obtained p('1 , '2 , '3 , '4) we are now in a position to determine
the various theoretical quantities. We calculate the quantum fluctuations of
position and momentum variables. Since the conditional probability p is
given is given by Eq. (44), this together with (48)�(50) may be employed
to calculate first and second moments. Thus we express

('1) =
�����

&� p('1 , '2 , '3 , '4 , t | '$1 , '$2 , '$3 , '$4 , 0) '1 d'1 d'2 d'3 d'4

�����
&� p('1 , '2 , '3 , '4 , t | '$1 , '$2 , '$3 '$4 , 0) d'1 d'2 d'3 d'4

(53)

in terms of conditional probability p. Explicit calculation yields

('1) =
0(t)

a
(54)

Similarly we obtain

('2
1) =

1
2a2 1 (t)+

0(t)2

a2 (55)

The conjugate variable to '1 is '3 whose average is given by

('3) =
0(t)

c
(56)

Similarly

('2
3) =

1
2c2 1 (t)+

0(t)2

c2 (57)
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Therefore the uncertainty in coordinate 2'1 and that in its conjugate
momentum 2'3 are obtained as follows;

2'2
1=('2

1)&('1) 2=
1
a2 _1 (t)

2 & (58)

2'2
3=('2

3)&('3) 2=_1 (t)
2 & 1

c2 (59)

where the relations (54)�(57) have been used. The uncertainty product
2'1 2'3 at any time is given by

2'1 2'3=
1

2 |a| c
1 (t) (60)

where 1 (t) is determined by Eq. (52) subject to initial conditions (47). This
implies that we are to choose ==1�|a| c to satisfy the minimum uncertainty
product condition for t=0, for the wave packet [i.e., 2'1 2'3= 1

2].
We now discuss the following results:

(i) The relation (60) illustrates the evolution of quantum fluctua-
tion as a function of time in terms of 1 (t) which by the virtue of Eq. (52)
is determined by the initial condition 1 (0) [Eq. (47)] and the other two
parameters D1 and #$. The early expansion of quantum fluctuations has been
recognized as a typical signature of classical chaos on a generic quantum
phenomenon.(24, 25) Note that D1 [=4A, see Eq. (51)] is the diffusion coef-
ficient that appeared in the Fokker�Planck Eq. (40) [this is not to be con-
fused with the thermal diffusion coefficient D in Eq. (4) which arises due to
the interaction with the surroundings] and #$ refers to the modified dissipa-
tion rate of the system in contact with the surroundings and is related to
* [by Eq. (51)] which is determined by Eq. (A13). The diffusion coefficient
D1 and modification of dissipation rate are due to the correlation of fluc-
tuations of the curvature of the classical potential `1(t) and `2(t) through
A2 } } } C4 in Eqs. (39) and (A1). The origin of diffusion coefficient D1 and
the modification of # thus have purely deterministic origin.

To analyze the growth of quantum fluctuations quantitatively
[Eq. (60)] we first consider the dissipative classical chaotic motion gover-
ned by Eq. (26). We choose the initial conditions for energies 1

8 and 1
6 .

These energy values are wellknown in the context of classical Henon�
Heiles Hamiltonian. It is important to note that even within the restricted
domain of weak dissipation, the dissipative Henon�Heiles system approaches
a manifold reduced dimensionality. The timescale over which this reduction
takes place is determined essentially by the magnitude of the damping
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constant #. This classical behaviour is illustrared in Figs. 1(a) and 2(a) for
#=0.001 for the energies 1

8 and 1
6 , respectively. Figs. 1(b) and 2(b) depict

the corresponding Poincare maps for the conservative (#=0.0) Henon�
Heiles system. It is thus apparent that even weak dissipation profoundly
alters the characteristics of the stochastic process represented by the classical
Hamiltonian chaos. The attractor clearly lies at the center. To calculate
classical ensemble average of the quantities like (`(t)) and ((`(t) `(t&{))) ,
we carry out averaging over long time series for the given initial condition.
The numerical procedure has been discussed earlier in ref. 24.

Following Eq. (60) we plot the variation of uncertainty product
[2'1 2'3] (2'1 and 2'3 are the quantum variances corresponding to posi-
tion and momentum for one degree of freedom, respectively) as a function

Fig. 1. (a) Plot of q1 vs p1 on the Poincare� surface of section for the Henon�Heiles system
with damping constant #=0.001 and initial energy E= 1

8 . (b) Same as in (a) but for #=0.0.
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Fig. 2. (a) Same as in Fig. 1(a) but for E= 1
6 . (b) Same as in (a) but for #=0.0.

of time for different values of energy corresponding to chaotic trajectories
(damping rate #=0.001) in Figs. 3 and 4. It has already been pointed out
that the major input for the theoretical quantity are the chaotic diffusion
coefficient D1 and #$ which are further related to A2 } } } C4 , i.e., to classical
correlation functions of the curvature of the potential. The theoretical
curves are denoted in Figs. 3 and 4 by the dotted lines.

(ii) The relation (60) also shows that there exist a critical limit to the
expansion of phase space. This limit is given by

2'1 2'3 | t � �=
D1

2 |a| c#$
(61)
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Fig. 3. Plot of uncertainty product (2'1 2'3) with time for the system as in Fig. (1). The
continuous line represents the numerical simulation of the master equation (fully quantum).
The dotted line refers to semiclassical calculation (Eq. (60)). (Both units are arbitrary).

The existence of this critical width is a consequence of the competetion
between chaotic diffusion, which attempts to expand the wave packet and
dissipation # which has the opposite tendency and this interplay ultimately
leads to a compromised steady state.

At this juncture it is necessary to clarify the concept of steady state
of the quantum dissipative system as applied here. The Henon�Heiles
Hamiltonian is strongly nonlinear and so the notion of the thermodynamic

Fig. 4. Same as in Fig. 3 but for E= 1
6 .
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equlibrium is inappropriate. Instead we mean a stationary state of the
quantum system in the following sense. Here we are concerned with an
asymptotic distribution of quantum noise variables 'i [zi=zi (t)+�1�2' i ,
zi (t) being the classical position or momentum variable] in terms of the
probability distribution function (,(u, t)) [=p(u, t), u being the combina-
tion of quantum noise variables 'i (see Eq. (41)], rather than a distribution
of zi (t)s. Note that this function does not involve any classical contribution
zi (t) directly. The classical chaotic fluctuation in zi (t)s contribute to 'i via
their classical correlation functions (in a, b, c of Eq. (41)). These correla-
tions primarily determine the dynamics of 'i [see (49) and (54)] through
* where the role of # is not the dominant one. This implies that although
the classical motion of zi (t) settles down on an attractor approximately on
a scale of, say, #&1 as noted in Figs. 1(a) and 2(a), the quantum noise 'i s
approach the steady state very rapidly, i.e., in a few time units. Thus the
present quantum steady state does not correspond to a settling down of
classical motion on a attractor. Had we consider the asymptotic distribu-
tion of c-number variables zi through the Wigner density function W(zi , t),
then that would have correspond to an ideal quantum stationary state.

(iii) To make our analysis of irreversible evolution in presence of
classical chaotic diffusion more quantitative, it is useful to calculate the
entropy S of the Gaussian state by defining it(2) as

S=&p(t) ln p(t) (62)

where p is as defined by Eq. (44). In Fig. 5 we show the evolution of
entropy due to quantum noise corresponding to the classical trajectories of
the dissipative Henon�Heiles system for the energies E= 1

6 and 1
8 and

#=0.001. At a very early stage the entropy change remains very small. It
is then followed by a sharp increase and then finally tends to increase at
a very slow rate. It is interesting to note that Zurek and Paz(18) advocated
the efficacy of studying the evolution of entropy as a conseqence of inter-
play between Liouville dynamics and high temperature surrounding to
examine the hall-mark of a nonintegrable system. Similar attempts had
been made by us(11) earlier using Husimi distribution function to identify
the different stages of quantum evolution.

Since the theory of stochastic fluctuations of the curvature of the
potential rests on van Kampen's expansion in :{c as emphasized earlier,
care should be taken to calculate the integrals (39) over the correlation
functions. To implement this numerically one considers the first fall of the
correlation functions to adjust the cut off in time for numerical evalution
of the integrals. This is a crucial requirement for the theory which should
be appropriately taken care of in numerical calculation.
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Fig. 5. Plot of evolution of entropy with time for damping constant #=0.001. (a) E= 1
6 and

(b) E= 1
8.

We now point out a pertinent issue in the context of the nature of
classical stochastic process considered here. It is wellknown that the
Henon�Heiles model (without dissipation) is a typical KAM problem, i.e.,
it represents soft chaos and in principle never reaches the limit of fully
developed hard chaos. This implies that, in a sense, classical noise has, in
general, not very short correlation time. However the systematic procedure
to deal with long correlation time when the nature of noise is rather unknown
is relatively scarce. In principle, van Kampen's strategy as adopted here is
applicable for consideration of higher order non-Markovian contributions.
But such an extension is rather complicated both from analytical and
numerical point of view. We therefore confine ourselves to the lowest order
non-Markovian contribution to noise arising out of classical stochasticity
and point out that such a description is not inappropriate in view of the
short timescale over which the quantum fluctuations 'i (t) determined by
the correlations of the classical noise, persist.

IV. NUMERICAL SIMULATION OF THE QUANTUM OPERATOR
MASTER EQUATION

For a full quantum-mechanical calculation to verify the basic theoreti-
cal propositions of semiclassical dynamics, we now return to Eq. (3). To
solve the Eq. (3) for the Henon�Heiles system we choose two sets of basis
vectors [ |n1)] and [ |n2)] of two different harmonic oscillators which
satisfy ( p̂2

1 �2m1+(1�2) m1|2
1 q̂2

1) |n1) =[(n1+1�2) �|1] |n1) and ( p̂2
2�2m2

+(1�2) m2 |2
2 q̂2

2) |n2) =[(n2+1�2) �|2] |n2) . The frequencies |1 and |2
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are arbitrarily adjusted to economize the size of the basis set. For the pre-
sent purpose we choose |1=6.25, |2=6.20, �=1, and 35 basis vectors.

Quantum-classical correspondence is maintained through the con-
struction of minimum uncertainty wave packets |:qi , pi

) of Gaussian form
in position and momentum representations having position (qi) and
average momentum ( pi) such that

(:qi , pi
| ni)=[exp(&0.5 |: i |

2)]
:n

i

- n i !
(63)

where,

:i=- mi|i �2 [(qi) +(i�mi| i)( pi)], i=1, 2

The quantum evolution is followed by locating the average positions
and average momenta of the initial wave packets corresponding to the
initial positions and momenta of two classically chaotic trajectories for the
two energy values 1

8 and 1
6 . Another important check for the numerical

calculation is to keep the trace of the density matrix [Eq. (3)] equal to
unity for the entire evolution. We have also checked that the result is
robust against the variation of the size of the basis set. The numerical
curves (solid lines) have been superimposed in Figs. 3 and 4 for the corre-
sponding values of energy. It may be observed that the agreement between
the theoretical and numerical curves is quite satisfactory. This justifies the
validity of our semiclassical approach.

V. DISCUSSION ON THE APPROXIMATIONS,
SUMMARY AND CONCLUSIONS

Based on a traditional scheme of system-reservoir model we have
developed a theory of dissipative chaotic system. We make use of
appropriate �-scaling analogous to van Kampen's 0-expansion, of equa-
tion for Wigner quasi-probability distribution functions which takes into
account of thermal diffusion and dissipation due to the reservoir. We have
shown that the semiclassical approximation leads us to an equation of
motion for Wigner function for quantum noise which is governed by the
dissipation due to reservoir and the second derivative of the classical poten-
tial, latter being a key-point in determining the stability of classical motion.
Since chaoticity originates from the exponential loss of correlation of
initially nearby trajectories this derivative behaves as a stochastic (deter-
ministic) process. This stochastic process is amenable to a theoretical
analysis (without imposing any a priori assumption about its nature) in
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terms of a treatment of stochastic differential equation with multiplicative
noise. The resulting Fokker�Planck equation carries the information about
the drift and diffusion coefficients which are expressible in terms of correla-
tion functions of fluctuations of the curvature of the classical potential.
As a prototypical example we have illustrated our analysis with the help of
the Henon�Heiles Hamiltonian.

We now make a few remarks on the approximations involved in the
present treatment and their validity.

(i) It must be emphasized that since the system-reservoir dissipative
dynamics as governed by the operator master equation (3) is based on
Born�Markov approiximation (the correlation time of the reservoir must
be very short (Markov) for the interaction between the system and the
reservoir to be sufficiently small (Born�weak coupling)), the underlying
stochastic process due to the reservoir is Markovian by construction. On the
other hand the stochasticity due to classical chaos as inherent in the fluc-
tuations of the curvature of the potential is non-Markovian since we take
account of short but finite correlation time of this fluctuations. The con-
struction of the associated Fokker�Planck equation is based on a pertur-
bative cumulant expansion in :{c , where {c is the correlation time of
fluctuation of the curvature of the potential. The convergence of expansion
as demonstrated by van Kampen(27) thus allows us to retain only upto
second derivative terms and as such one need not go to third or higher
order terms to describe the dynamics. While we note that there exist a vast
body of literature in condensed matter and chemical physics dealing with
finite time response of the reservoir which results in frequency dependence
of friction coefficient #, these and related aspects of dissipative dynamics are
outside the scope of the present treatment. Our approach is similar to
Graham et al.(7) and Milonni et al.(8) in this respect. Thus the short time
regime, we believe, is mainly controlled by the curvature of the potential
and the correlation of its fluctuations or in other words the short time
dynamics is dominated by characteristic motion of the system itself.
However, in the ultimate passage towards equilibrium the dissipation plays
a prominent decisive role.

(ii) In the master equation (4), the classical stochasticity due to
chaos and the quantum noise due to incoherent processes induced by the
heat bath act simultaneously and influence one another. We have already
noted that because of �-scaling of this equation, one arrives at Eq. (6) in
which the quantum noise term D due to surrounding does not appear
in the lowest order. Thus it is because of strict semiclassical nature of
our approach which is consistent with the consideration of dissipative
contribution of (�W��t)dissipative in Eq. (4) (valid for kT>�|, because the
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propagator in the relevant integral form of the density operator master
equation of Leggett and Caldeira [5.14 of ref. 5] has been approximated
keeping in view of this inequality). However a simple calculation shows
that the effect of this incoherent contribution makes its presence felt in the
next order. The quantum noise due to surroundings becomes appreciable
only at very low temperature.

(iii) We have already pointed out that Eq. (3) because of Born
approximation is valid for weak damping case. We take care of this limita-
tion by choosing small values of # for carrying out numerical simulation of
quantum master equation (3) and comparing our results with semiclassical
analysis. The latter analysis based on Eq. (4) is free from Born approxima-
tion and is therefore valid for both weak and strong damping limits. For
a comparison over the entire range of dissipation one needs simulation of
other kinds of master equation which are free from weak coupling
approximation. Unfortunately most of them are not well suited for numeri-
cal implementation.

We thus summarise the main conclusions of this study:

(i) The fluctuation of the second derivative of the potential due to
classical chaos is amenable to a stochastic description when the correlation
time of fluctuations is short but finite.

(ii) �-scaling identifies an early stage of quantum evolution which is
dominated by chaotic diffusion and dissipation but not by thermal diffu-
sion.

(iii) The drift and diffusion terms of the Fokker�Planck equation are
intrinsic characteristic of dynamical properties of the system since they
depend crucially on the correlation of the fluctuations of the curvature of
the potential. The dissipation is due to the coupling of the system to the
external reservoir which causes irreversible evolution and is truely a many-
body effect. On the other hand the chaotic diffusion imparts a kind of
irreversibility in the evolution which has a strict deterministic origin and is
characteristic of the nonlinear system itself.

(iv) The Fokker�Planck equation is reminiscent of Kramers' equa-
tion which describes the Brownian motion in phase space for thermally
activated processes. The Fokker�Planck equation also assumes a generic
form for two-degree-of-freedom systems, in general.

(v) Our results show how the initial quantum noise gets amplified
by classical chaotic diffusion and then ultimately equilibriated with the
passage of time under the influence of dissipation.
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(vi) We establish that there exists a critical limit to the expansion of
the phase space which is determined by chaotic diffusion and dissipation.

Henon�Heiles system is a classic Hamiltonian that illustrates deter-
ministic stochasticity in two-degree-of-freedom systems. In view of its
prototypical role played in earlier as well as in the present investigation, we
hope that the conclusions drawn here will find qualititative and semiquan-
tative applicability in other cases of dissipative two-degree-of freedom
systems at the semiclassical level of description, in general.

APPENDIX A. THE TRANSFORMATION OF THE
FOKKER�PLANCK EQUATION

The diffusion terms corresponding to (38) under weak noise-
approximation are given by

E$1=A4 '2
2(0)+C4 '2

1(0)&'1(0) '2(0)(B$4+B4)

E$2=A4 '2
1(0)+'1(0) '2(0)(B4+B$4)+C4 '2

2(0)

F $1='1(0) '2(0)(A4&C4)+B4'2
2(0)&B$4'2

1(0)

F $2='1(0) '2(0)(A4&C4)&B4'2
1(0)+B$4'2

2(0)

G$='2
2(0)(A2+B2)+'2

1(0)(C2&B$2)+'1(0) '2(0)(A2&C2&B$2&B2)

+'1(0) '4(0)(B$3+C3)+'2(0) '3(0)(B3&A3)+'1(0) '3(0)(B$3&C3)

&'2(0) '4(0)(A3+B3)

H$='2
2(0)(B$2+C2)+'2

1(0)(A2&B2)+'1(0) '2(0)(A2&C2+B2+B$2)

&'1(0) '4(0)(A3+B3)+'1(0) '3(0)(B3&A3)&'2(0) '4(0)(B$3&C3)

+'2(0) '3(0)(C3&B$3) (A1)

Zeroes in '1(0), '2(0), '3(0) and '4(0) refer to their initial values
corresponding to the initial preparation of the coherent wave packet which
is centered around the classical position and momentum for the chaotic
trajectory.

The Fokker�Planck equation (37) can then be written in a more com-
pact form as follows;
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�(,)
�t

=_&'3

�(,)
�'1

&'4

�(,)
�'2

+('1k+'2 l+2#'3)
�(,)
�'3

+('1 l+'2 m+2#'4)
�

�'4

(,) +4#(,) +E$1
�2(,)
�'3 �'1

+E$2
�2(,)
�'4 �'2

+F $1
�2(,)
�'3 �'2

+F $2
�2(,)
�'4 �'1

+G$ \ �2

�'2
3

+
�2

�'3�'4+ (,)

+H$ \ �2

�'4 �'3

+
�2

�'2
4+& (,) (A2)

where

k=1&C3+B$3&B3&A3+(`1)

m=1&(`1) +B3&B$3&A3&C3 (A3)

l=&B$3&A3&C3+B3&(`2)

We now make the following transformation;

u=a'1+b'2+c'3+'4 (A4)

where a, b and c are constants to be determined. Using this transformation
we can write the Eq. (A2) as

�(,)
�t

=_*u
�

�u
+A

�2

�u2+4#& (,) (A5)

where

A=E$1ac+E$2 b+F $1bc+F $2 a+G$(c2+c)+H$(c+1) (A6)

and

*u=&'3a&'4b+'1ck+'2cl+2#'3 c+'1 l+'2m+2#'4 (A7)

Making use of Eq. (A4) in (A7) we obtain,

*a=ck+l

*b=cl+m
(A8)

*c=&a+2#c

*=2#&b
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The above relations can be used to obtain the following algebraic
equation for *

*4+d1*3+d2 *2+d3 *+d=0 (A9)

where

d1=&4#

d2=4#2+k+m
(A10)

d3=&2#(k+m)

d=mk&l 2

We now seek for a perturbative solution of Eq. (A9). To this end let
us first note that in the limit # � 0 Eq. (A9) reduces to a biqudratic form
(since d1 and d3 vanishes) whose solution is given by

*0=\_&d $2\- d $2
2&4d

2 &
1�2

(A11)

where

d $2=k+m (A12)

The lowest order perturbative solution of the the Eq. (A9) is therefore
given by

*=*0 _1&
d1 *2

0+d2+4#2*0

4*4
0+3d1*2

0+2d2*0+d3& (A13)

For the present problem the positive real root of * is allowed which
satisfies the physical condition (the probability distribution function must
vanish at \�). Now the values of the constants a, b and c which are used
in Eq. (A4) can be calculated in terms of * which is given by Eq. (A13) as
follows

b=2#&*

c=
l

*(2#&*)&k
(A14)

a=(2#&*) c
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